Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Structure and properties of ordered Li₂IrO₃ and Li₂PtO₃

Matthew J. O'Malley^{a,b,*}, Henk Verweij^b, Patrick M. Woodward^a

^a Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210-1185, USA

^b Department of Materials Science and Engineering, The Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210-1124, USA

ARTICLE INFO

Article history: Received 24 October 2007 Received in revised form 1 April 2008 Accepted 11 April 2008 Available online 19 May 2008 Keywords:

Ordered rock salt pH sensors Metal oxides Platinum group metal oxides Lithium ion X-ray diffraction Faulting

ABSTRACT

The structures of Li_2MO_3 (M = Ir, Pt) can be derived from the well-known Li-ion battery cathode material, LiCoO₂, through ordering of Li⁺ and M^{4+} ions in the layers that are exclusively occupied by cobalt in LiCoO₂. The additional cation ordering lowers the symmetry from rhombohedral (R-3m) to monoclinic (C2/m). Unlike Li₂RuO₃ no evidence is found for a further distortion of the structure driven by formation of metal-metal bonds. Thermal analysis studies coupled with both *ex-situ* and *in-situ* X-ray diffraction measurements show that these compounds are stable up to temperatures approaching 1375 K in O₂, N₂, and air, but decompose at much lower temperatures in forming gas (5% H₂:95% N₂) due to reduction of the transition metal to its elemental form. Li₂IrO₃ undergoes a slightly more complicated decomposition in reducing atmospheres, which appears to involve loss of oxygen prior to collapse of the layered Li₂IrO₃ structure. Electrical measurements, UV-visible reflectance spectroscopy and electronic band structure calculations show that Li₂IrO₃ is metallic, while Li₂PtO₃ is a semiconductor, with a band gap of 2.3 eV.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Solid-state pH sensors are highly desirable due to their stability at high temperatures, high pressures, and potential use in non-aqueous environments. Transition metal oxides such as RuO₂, IrO₂, and PtO₂ have been investigated as solid-state pH sensing materials since the mid-1980s [1,2], with IrO₂ showing the most promise. The use of a lithium carbonate melt process to produce solid-state iridium oxide pH sensors has been shown to produce sensors that are more stable and reproducible than other techniques used to produce iridium oxide-based pH sensors [3].

Carbonate melt-based sensors are produced via oxidation of an iridium wire in molten lithium carbonate [3–5]. The phases responsible and the mechanism behind the pH sensitivity of these systems are not well understood, despite their current use in commercial applications. Thus, knowledge of the structure and properties of phases produced via reactions between lithium carbonate and both Ir and Pt, are vital to further improving these sensors.

The stable phases obtained using traditional solid-state reactions between Li_2CO_3 and the platinum group metals (M = Ru, Ir, Pt) include Li_2RuO_3 [6–8], Li_2IrO_3 [9], and Li_2PtO_3 [10]. Of these phases the ruthenate has been most extensively studied. There are

relatively few reports of other ternary oxide phases forming, only Li_3RuO_4 [11], Li_8IrO_6 [12], Li_8PtO_6 [12], and $Li_{0.64}Pt_3O_4$ [13] have been reported. The structure of Li_2MO_3 can be described as an ordered variant of the rock salt structure containing cation layers that alternate between pure lithium layers and mixed metal layers, LiM_2 (Fig. 1). These phases are structurally and compositionally related to $LiCoO_2$ currently used as the cathode in lithium ion batteries.

The relative simplicity of the Li₂O–IrO₂ phase diagram suggests that Li₂IrO₃ may play a key role in the production and/or operation of miniaturized pH sensors produced via the lithium carbonate melt oxidation of iridium wires. Despite the technological importance of this material a number of questions regarding its structure, chemical stability, and physical properties remain unanswered. To address this deficiency we report here a systematic study of the structural, thermal, optical, and electrical properties of highly ordered Li₂IrO₃ and Li₂PtO₃. These are compared and contrasted with Li₂RuO₃.

2. Experimental

 Li_2MO_3 (M = Ru, Ir, Pt) were prepared using stoichiometric mixtures of Li_2CO_3 (J.T. Baker, 99.2%) and either Ru (~325 mesh, Cerac, 99.95%), Ir (~325 mesh, Alfa Aesar, 99.9%) or Pt (~325 mesh, Alfa Aesar, 99.9+%). For all syntheses 5% excess Li_2CO_3 was added to compensate for high-temperature lithium volatility. The starting materials were mixed under isopropanol using an agate

^{*} Corresponding author at: Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210-1185, USA.

E-mail address: momalley@chemistry.ohio-state.edu (M.J. O'Malley).

^{0022-4596/\$ -} see front matter \circledast 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2008.04.005

Fig. 1. The Li₂MO₃ structure shows the characteristic layering (a), as well as the LiM₂ layer with corresponding oxygens (b).

mortar and pestle, and placed in high-density alumina crucibles (Coorstek, 99.8%). The mixtures were then heated in air at a rate of 10 K/min to the initial target temperature of 1025 K and held at that temperature for 12 h before cooling back to room temperature at a rate of 10 K/min. Successive heating cycles were performed by increasing the annealing temperature in 50 K steps, up to 1325 K where pure ordered phases were obtained. Attempts to streamline the synthesis by pre-reacting the starting materials at 1025 K followed by heating directly to 1325 K lead to premature decomposition rather than the formation of highly ordered structures.

X-ray powder diffraction (XRPD) data were collected in Bragg–Brentano geometry using a Bruker D8 Advance X-ray powder diffractometer (40 kV, 50 mA, sealed Cu X-ray tube). This instrument is equipped with an incident beam Ge 111 monochromator, selecting only CuK α_1 radiation ($\lambda = 1.5406$ Å), and a Braun linear position sensitive detector. The data were collected over the angular range $10^{\circ} < 2\theta < 100^{\circ}$ with a step size of 0.014265° and a counting time of 1 s per step. Structural refinements were completed using the Rietveld method as incorporated in the software package TOPAS Academic [14,15].

Thermo-gravimetric analyses (TGAs) were performed using a Perkin Elmer TGA 7 with TAC 7/DS Thermal Analysis Instrument Controller. Approximately 50 mg of sample was placed in a platinum boat for each analysis. The samples were heated to 1575 K with a heating rate of 10 K/min. A gas flow rate of 40 mL/min was used for reagent grade O_2 , air, N_2 , and forming gas (5:95, H_2 : N_2).

High-temperature *in-situ* XRPD measurements in forming gas (5:95, H₂:N₂) were made using an Anton Paar HTK 1200 furnace in conjunction with the Bruker D8 Advance. The samples were heated to 673 K with a ramp rate set to 1 K/min and then held at constant temperature for each measurement. The *in-situ* XRPD data were collected over the angular range $17.5^{\circ} < 2\theta < 47.5^{\circ}$ with a step size of 0.072978° and a counting time of 0.5 s per step. The lattice parameters from the *in-situ* XRPD experiments were determined using Rietveld refinements. Due to the limited angular range over which the high-temperature data were collected the atomic parameters were constrained to be equal to their room temperature values.

UV–visible diffuse reflectance data were collected on polycrystalline samples using a Perkin-Elmer Lambda 20 scanning double-beam spectrometer equipped with a 50-mm Labsphere integrating sphere over the spectral range 400–1100 nm (3.1–1.1 eV). The Kubelka–Munk function was used to convert the diffuse reflectance data into absorption data. The band gap energies reported were determined using Shapiro's method of extrapolating the onset of absorption to the wavelength axis [16].

Electronic structure calculations were performed using the Cambridge Serial Total Energy Package (CASTEP) [17]. CASTEP is a first principles density functional theory (DFT) plane wave pseudo-potential simulation code. The calculations were performed in the frame of the generalized gradient approximation (GGA) as derived by Perdew and Wang (PW-91) for the exchange and correlation effects [18,19]. A Gaussian smearing scheme of 0.05 eV was employed when drawing the density of states (DOS) plots.

Alternating current (AC) electrical measurements were performed using a Solartron SI 1260 Impedance/Gain-Phase Analyzer scanning from 10^7 and 1 Hz, over the temperature range 300–800 K. Compact pellet samples were prepared using uniaxial pressing (230 MPa) followed by heating at 1300–1400 K for 4 h. The circular pellets were sanded to obtain a smooth surface before making electrical contacts with silver paint, (Ted Pella, Leitsilber 200) connected via gold mesh contacts. The material that was removed from the pellet during sanding was analyzed using XRPD on a zero-background sample holder to verify that sintering did not alter the phase purity.

3. Results and discussion

3.1. Structural characterization

There is some debate in the literature regarding the proper choice of unit cell and space group symmetry of the Li₂MO₃ phases. Li₂IrO₃ has been reported using C2/c (Z = 8) symmetry [9], as has Li₂RuO₃ [6–8], while Li₂PtO₃ has been reported to possess $P3_1$ (Z = 6) [20] and C2/m (Z = 4) symmetry [21]. A recent neutron diffraction study on Li₂RuO₃ reported C2/m symmetry (Z = 4) at 600 K [22], and $P2_1/m$ symmetry (Z = 4) at room temperature [22].

A closer look shows that the C_2/m and C_2/c descriptions are only subtly different. However, consideration of symmetry relationships shows that the C_2/m description is much more likely to be correct. Starting from the LiCoO₂ structure and removing the three-fold axis of the *R*-3*m* space group results in a monoclinic unit cell with C_2/m symmetry, and *a*, *c*, and β parameters that closely match the C_2/m descriptions of Li₂RuO₃ and Li₂PtO₃, and a *b*-axis that is 1/3 of the value reported for the Li₂MO₃ compositions. By replacing every third transition metal ion with Li⁺ the *b*-axis is tripled leading directly to the C_2/m description of Li₂RuO₃ and Li₂PtO₃. The symmetry of the room temperature structure of Li₂RuO₃ is further lowered to $P_{2_1/m}$ through the formation of Ru–Ru pairs. This is presumably an electronic distortion driven by metal–metal bonding interactions.

To confirm the structural details of the Li_2MO_3 phases, Rietveld refinements were carried out using the XRPD data. The Rietveld fits to the XRPD patterns are presented in Fig. 2. The results of the structural refinements for Li_2RuO_3 are in good agreement with the previously reported Li_2RuO_3 with $P2_1/m$ symmetry [22], while Li_2IrO_3 and Li_2PtO_3 are in good agreement with the isostructural Li_2MnO_3 possessing C2/m symmetry [23].

The structural parameters obtained from the refinements of Li_2IrO_3 and Li_2PtO_3 are reported in Table 1. The accuracies of the refined structures are supported by the bond valence analyses presented in Table 2. The bond valence sums for the respective cations and anions are in good agreement with the expected oxidation states. This shows that even the light atom positions are determined with a reasonable degree of accuracy.

As seen in Fig. 2, we were not able to completely model the profiles of a number of peaks in the 2θ region between 19° and 33° . The asymmetry of these peaks originates from the presence of stacking faults associated with shifts between successive LiM₂ layers as previously observed for disordered Li₂MnO₃ [23] and Li₂PtO₃ [21], causing the classic Warren lineshape seen in Fig. 2 [24]. To partially account for the presence of stacking faults we have refined the cation site occupancies in the LiM₂ layers, within the constraint that the Li₂MO₃ stoichiometry is maintained. While this approach adequately accounts for changes in intensity of these peaks, it does nothing to improve the fit of the peak profiles.

Thus, it should be stressed that the disorder associated with the site occupancy values in Table 1 appears to be largely due to faults in stacking of highly ordered layers rather than random Li/M disorder. It should also be noted that concentration of stacking faults (as assessed by the peak broadening) looks to be smaller than most previous descriptions of these materials in the literature.

Table 1							
Structural	parameters	for	Li ₂ MO ₃	(M =	Ir, Pt)-C2	m

Atom	Site	Occ	x	у	Ζ	$B_{\rm iso}/{\rm \AA}^2$
(a) Li ₂ IrC)3					
Ir(1)	- 4g	0.902(2)	0	0.3332(2)	0	0.39(4)
Li(1)	4g	0.098(2)	0	0.3332(2)	0	0.39(4)
Li(2)	2a	0.804(3)	0	0	0	0.39(4)
Ir(2)	2a	0.196(3)	0	0	0	0.39(4)
Li(3)	4h	1.0	0	0.809(6)	0.5	0.39(4)
Li(4)	2d	1.0	0	0.5	0.5	0.39(4)
O(1)	8j	1.0	0.252(4)	0.316(1)	0.759(2)	0.3
O(2)	4i	1.0	0.256(5)	0	0.788(3)	0.3
a = 5.163	33(2)Å, İ	b = 8.9294(3))Å, $c = 5.121$	$9(2)$ Å, $\beta = 109$).759(3)°, V =	= 222.2(2)Å ³ ,
$R_{\rm wp} = 19$.800%, R	$R_{\rm Bragg} = 5.382$	%, $\chi^2 = 2.283$	3		
(b) Li Dt	0					
$(D) Li_2 F U$ D+(1)	03 4α	0.017(1)	0	0 2221(2)	0	0.20(4)
Ft(1)	4g 4a	0.917(1)	0	0.3331(2) 0.2221(2)	0	0.20(4)
LI(1) Li(2)	48 2a	0.083(1)	0	0.5551(2)	0	0.20(4)
LI(Z) Dt(Z)	2u 2a	0.654(5)	0	0	0	0.20(4)
PI(Z)	20 4h	0.100(5)	0	0 822(6)	0	0.20(4)
LI(5)	411	1.0	0	0.825(0)	0.5	0.20(4)
LI(4)	20	1.0	0 2 4 9 (4)	0.5	0.5	0.20(4)
O(1)	8j	1.0	0.248(4)	0.319(1)	0.763(2)	0.3
0(2)	41	1.0	0.260(5)		0.771(3)	0.3
a = 5.182	36(2)A, I	b = 8.9/26(3)	A, C = 5.1113	$\beta(1) A, \beta = 109$	$.864(2)^{\circ}, V =$	223.6(2) A ³ ,
$K_{\rm wp} = 18$.970%, R	$B_{\rm ragg} = 4.791$	$\chi^{2} = 1.768$			
Bico TIXEC	i at O 3 A	Tor oxygen	positions			

Fig. 2. X-ray powder diffraction pattern and Rietveld refinement for (a) Li₂RuO₃ (b) Li₂IrO₃ (c) Li₂PtO₃: observed (•), calculated (line), and difference (bottom) profiles. Tick markers indicate the Bragg reflection positions.

Table	2
-------	---

Bond	lengths	and	bond	valence	values	for	Li ₂ IrO ₃	and	Li ₂ PtO

	Li ₂ IrO ₃			Li ₂ PtO ₃				
	Bond length (Å)		Bond valence		Bond length (Å)		Bond valence	
М-О	1.97(1) 2.01(1) 2.08(2)	$\begin{array}{c} \times \ 2 \\ \times \ 2 \\ \times \ 2 \\ BVS \end{array}$	0.763(4) 0.685(3) 0.567(5) 4.036(8)	$\begin{array}{c} \times \ 2 \\ \times \ 2 \\ \times \ 2 \end{array}$	1.99(1) 2.04(1) 2.05(2)	$\begin{array}{c} \times \ 2 \\ \times \ 2 \\ \times \ 2 \\ BVS \end{array}$	0.741(4) 0.647(3) 0.630(6) 4.036(7)	× 2 × 2 × 2
Li ₂ –0	1.97(3) 2.19(1)	$\begin{array}{c} \times \ 2 \\ \times \ 4 \\ BVS \end{array}$	0.335(5) 0.141(1) 1.236(5)	$\begin{array}{c} \times \ 2 \\ \times \ 4 \end{array}$	2.06(3) 2.18(1)	$\begin{array}{c} \times \ 2 \\ \times \ 4 \\ BVS \end{array}$	0.201(3) 0.145(1) 0.982(3)	× 2 × 4
Li ₃ -0	1.88(3) 2.13(2) 2.35(4)	$\begin{array}{c} \times \ 2 \\ \times \ 2 \\ \times \ 2 \\ BVS \end{array}$	0.327(5) 0.166(2) 0.092(2) 1.170(6)	$\begin{array}{c} \times \ 2 \\ \times \ 2 \\ \times \ 2 \end{array}$	1.97(4) 2.17(2) 2.23(4)	$\begin{array}{c} \times \ 2 \\ \times \ 2 \\ \times \ 2 \\ BVS \end{array}$	0.249(5) 0.149(1) 0.127(2) 1.050(6)	× 2 × 2 × 2
Li ₄ –0	2.23(1) 2.24(2)	$\begin{array}{c} \times \ 4 \\ \times \ 2 \\ BVS \end{array}$	0.127(1) 0.123(1) 0.754(1)	$ imes 4 \\ imes 2$	2.15(2) 2.22(1)	$\begin{array}{c} \times \ 2 \\ \times \ 4 \\ BVS \end{array}$	0.157(1) 0.130(1) 0.888(2)	× 2 × 4
O ₁ –M O ₁ –Li	1.97(1) 2.08(2) 1.88(3) 2.13(2) 2.19(1) 2.23(1)	$ \begin{array}{c} \times \ 1 \\ BVS \end{array} $	0.763(4) 0.567(5) 0.327(5) 0.166(2) 0.141(1) 0.127(1) 2.091(9)	$ \begin{array}{c} \times \ 1 \\ \times \ 1 \end{array} $	1.99(1) 2.05(2) 1.98(4) 2.17(2) 2.18(1) 2.22(1)	$ \begin{array}{c} \times \ 1 \\ BVS \end{array} $	$\begin{array}{c} 0.741(4)\\ 0.630(6)\\ 0.249(5)\\ 0.149(1)\\ 0.145(1)\\ 0.130(1)\\ 2.044(9) \end{array}$	× 1 × 1 × 1 × 1 × 1 × 1 × 1
O ₂ –M O ₂ –Li	2.01(1) 1.97(3) 2.24(2) 2.35(4)	$\begin{array}{c} \times \ 2 \\ \times \ 1 \\ \times \ 1 \\ \times \ 2 \\ BVS \end{array}$	0.685(3) 0.336(5) 0.123(1) 0.092(2) 2.013(6)	$\begin{array}{c} \times \ 2 \\ \times \ 1 \\ \times \ 1 \\ \times \ 2 \end{array}$	2.04(1) 2.06(3) 2.15(2) 2.23(4)	$\begin{array}{c} \times \ 2 \\ \times \ 1 \\ \times \ 1 \\ \times \ 2 \\ BVS \end{array}$	0.647(3) 0.201(3) 0.157(1) 0.137(2) 1.926(5)	× 2 × 1 × 1 × 2

Bond valence values for a given site were determined using the most abundant element, as such Li₁ from Table 1 is omitted.

As noted above attractive Ru–Ru interactions in Li₂RuO₃ are reported to lower the symmetry from *C*2/*m* to *P*2₁/*m*. Because the two space groups have different systematic absences this distortion should give rise to additional reflections in the diffraction pattern. Such peaks can be observed at ~19.0° ($\overline{101}$) and ~30.3° ($\overline{102}$) as well as shoulders on more intense peaks near ~21.9° (100) and ~27.9° ($\overline{121}$) in the XRPD patterns of Li₂RuO₃ (Fig. 2a). These peaks only appear for Li₂RuO₃ systems that show moderate to low degrees of faulting. No evidence of these extra peaks can be found in the XRPD patterns for Li₂IrO₃ and Li₂PtO₃ (Fig. 2b and c). Apparently increasing the *d*-orbital electron count from four (Ru⁴⁺) to five (Ir⁴⁺) or six (Pt⁴⁺) destabilizes the electronic interactions responsible for this distortion.

3.1.1. Thermal stability

The thermal stabilities of Li₂RuO₃, Li₂IrO₃, and Li₂PtO₃, at elevated temperatures are of interest for high-temperature pH sensing applications. Thus, TGA was performed in O₂, air, N₂, and H₂:N₂ (5:95), the resulting plots are presented in Fig. 3. The compounds have similar stabilities in O₂, air and N₂. Under these non-reducing atmospheres they are stable, as determined by the onset of weight loss, up to ~1525, ~1475, and ~1375K for Li₂RuO₃, Li₂IrO₃, and Li₂PtO₃, respectively. The increasing thermal stability upon going from Pt to Ir to Ru correlates with the decrease in noble character of the metallic element. We also note a small weight loss beginning at ~475 K of 0.49%, 0.60%, and 0.18% for Li₂RuO₃, Li₂IrO₃, and Li₂PtO₃, respectively. The origin of this feature is not certain, but it may be caused by the loss of water.

All three phases show reduced thermal stability in forming gas, $H_2:N_2$ (5:95). Li_2PtO_3 and Li_2RuO_3 lose weight in two steps. The

Fig. 3. TGA for Li_2MO_3 (M = Ru, Ir, Pt) in O_2 , air, N_2 , and $H_2:N_2$ (5:95). The horizontal dashed lines represent the calculated weight percent for potential decomposition products.

first weight loss takes place over the approximate temperature range 800–1000 K. *Ex-situ* XRPD measurements of quenched samples show that this step corresponds to reduction of the platinum group metal to its elemental state accompanied by exsolution of lithium oxide. The upper set of dashed lines in Fig. 3 show the theoretical weight loss corresponding to the decomposition reaction: $\text{Li}_2MO_3(s) \rightarrow \text{Li}_2O(s)+M(s)+O_2(g)$. The differences between the calculated and observed mass losses likely result from a fractional amount of Li₂O decomposition and/or volatilization prior to reaching the observed plateau. Further heating leads to complete loss of Li₂O (see lower set of dashed lines), as seen in Fig. 3.

The TGA of Li₂IrO₃ in forming gas differs from those of Li₂PtO₃ and Li₂RuO₃. An additional weight loss begins around 475 K, reaching a plateau at ~94 wt%. This feature suggests formation of an intermediate phase along the decomposition pathway. To better understand this behavior *in-situ* XRPD experiments were performed. Not withstanding the inevitable temperature and heating rate differences between the two measurements a cursory look at the *in-situ* XRPD data (Fig. 4) indicates that Li₂IrO₃ decomposes into Ir and a Li₂O-like phase. The XRPD patterns above 550 °C are dominated by the diffraction peaks of metallic iridium. In addition there are a couple of weak peaks that cannot be unambiguously identified. Nevertheless, on cooling the peak at 32.1° shifts to ~33.6°, which is exactly where the strongest peak for Li₂O, the (111) peak, is expected. Thus we conclude that the weak peaks seen in Fig. 4 originate from Li-containing phases.

Fig. 4. In-situ X-ray powder diffraction patterns of Li_2IrO_3 in forming gas (H₂:N₂, 5:95) from 300 to 675 K with 5 K increments.

Upon closer inspection, shifts in the positions of several diffraction peaks for Li₂IrO₃ are observed. Fig. 5 shows the unit cell volume of the Li₂IrO₃ phase as determined from the *in-situ* XRPD data. There is an abrupt increase of ~1% in the unit cell volume that precedes the decomposition. Loss of oxygen and the corresponding reduction of Ir⁴⁺ would be expected to both increase the unit cell volume and trigger a weight loss. However, a 6% weight loss corresponds to loss of one oxygen ion per formula unit and it is difficult to imagine how Li₂IrO₃ could accommodate such a degree of oxygen loss while maintaining its structural integrity. Further study is needed to fully understand the thermal decomposition of Li₂IrO₃, but it does not appear as though a structurally distinct intermediate phase exists.

3.1.2. Electronic structure calculations

To better understand the properties of the Li_2MO_3 phases electronic band structure calculations were performed on the structures obtained for Li_2IrO_3 and Li_2PtO_3 . The electronic structure of Li_2RuO_3 is complicated by the symmetry lowering distortion of the Ru-sublattice. A full computational study of this distortion is in progress and will be published elsewhere.

Electronic DOS plots for Li₂IrO₃ and Li₂PtO₃ are presented in Fig. 6. The octahedral coordination of Ir⁴⁺ and Pt⁴⁺ splits the *d*-orbitals into t_{2g} (π^*) and e_g (σ^*) states. The 2D edge-sharing connectivity of the MO₆ octahedra in Li₂MO₃ broadens the antibonding *M*–O levels into bands. The t_{2g} (π^*) states are 5/6 and completely filled in Li₂IrO₃ and Li₂PtO₃, respectively. The Fermi level cuts through the t_{2g} (π^*) band in Li₂IrO₃, suggesting metallic character. The electronic structure of Li₂PtO₃ is clearly that of a semiconductor with a gap of 2.32 eV between the filled t_{2g} (π^*) and empty e_g (σ^*) bands. These results agree with expectations based on a simple consideration of the *d*-orbital filling.

Upon moving from Ir to Pt there is a decrease in the energy separation of the bands that are nominally labeled as O 2p bands¹ and the t_{2g} (π^*) states. This is a reflection of the increasingly covalent character of the *M*–O bonds. While these two sets of bands are separated in Li₂IrO₃, the gap has completely collapsed for Li₂PtO₃. Another measure of the bond covalency is seen in the fact that the O 2*p* orbitals and the Pt 5*d* orbitals contribute almost equally to both the bonding states (-5 to -7 eV) and antibonding states (>-2 eV). Thus the Pt–O bonding in Li₂PtO₃ is almost fully

Fig. 5. Unit cell volume evolution of Li_2IrO_3 and the refined phase fractions of Ir and Li_2O during reduction in forming gas (H₂:N₂, 5:95) as obtained from the Rietveld refinements.

Fig. 6. The electronic density of states (DOS) plots for Li_2MO_3 (M = Ir, Pt). The *d*-orbital contribution can be completely attributed to the platinum group metal, while the *p*-orbital contribution comes predominantly from oxygen. The horizontal dashed line depicts the Fermi energy.

covalent. The increased covalency correlates well with the thermal stability observed in oxidizing and inert atmospheres.

3.1.3. Optical properties

The UV-visible diffuse reflectance spectra for Li_2IrO_3 and Li_2PtO_3 are presented in Fig. 7. The Li_2IrO_3 is strongly absorbing in the visible spectrum and hence black in appearance. Li_2PtO_3 is bright yellow and only begins to strongly absorb at wavelengths <500 nm. By extrapolating the absorbance in the UV-visible spectrum to zero absorbance a band gap of 2.3 eV for Li_2PtO_3 is obtained. This value is in excellent agreement with the calculated band gap of 2.32 eV.

3.1.4. Electrical measurements

The electrochemical impedance spectroscopy measurements for Li_2PtO_3 are shown in Fig. 8. Because the measurements were made on a polycrystalline pellet of limited density, 63.1% theoretical, our interpretation is limited to qualitative features.

The impedance of the Li_2PtO_3 sample decreases rapidly with increasing temperature, indicating activated carrier transport. The conductivities determined upon extrapolation to a frequency of 0 Hz were used to construct an Arrhenius plot (Fig. 9), from which an activation energy of, 0.92(5) eV was extracted. The difference between this value and the optical band gap (2.3 eV) is not immediately obvious. It is worth noting, the activation energy reported here is almost twice the value of 0.49 eV previously reported for Li₂PtO₃ [20]. The origin of this discrepancy is not clear, but X-ray patterns suggest that the earlier studies were carried out on a sample with a higher degree of stacking faults.

¹ The lower energy "O 2p" bands are actually M d-O 2p bonding gradually giving way to nonbonding O 2p bands as the energy increases.

Fig. 7. Plot of UV-vis diffuse reflectance spectra converted to absorbance using the Kubelka–Munk function for Li_2IrO_3 and Li_2PtO_3 .

Fig. 8. Impedance spectra from 1 to 10^7 Hz for Li₂PtO₃ from 400 to 800 K.

Fig. 9. Conductivity plot, $\log(\sigma) = f(10^3/T)$, of Li_2MO_3 (M = Ir, Pt) with corresponding linear fit (line) for the semiconducting Li_2PtO_3 used to determine the reported activation energies.

It appears that the conductivities of these systems are dependent on the method of preparation and the degree of stacking fault disorder present.

Fig. 9 also presents the temperature dependence of Li_2IrO_3 conductivities determined upon extrapolation to a frequency of 0 Hz. Although the measured conductivities for these two compounds are not as high as might be expected for a metallic conductor, Li_2IrO_3 shows little temperature dependence. This behavior, taken together with the electronic structure calculations

suggest this phase is in fact a metallic conductor. The relatively low absolute conductivity observed for Li_2IrO_3 is likely a result of the combined effects of incomplete sintering of the pellets and the anisotropic nature of the electronic structure.

Given the structural similarities to well-known Li^+ -ion conductors, such as $LiCoO_2$, we considered the possibility that Li^+ conduction may be contributing to the total conductivity, of the semiconducting Li_2PtO_3 . If the ionic conductivity was a significant portion of the total conductivity the resistance should increase as one proceeds to higher frequencies due to the inability of the ions to respond to high frequency changes in field, but this is not observed. Therefore, it is reasonable to assume that electronic conductivity dominates any contribution from ionic conductivity to the total conductivity.

4. Conclusions

The Li₂ MO_3 (M = Ru, Ir, Pt) systems are thermally stable against reduction in air, O_2 , and N_2 below 1375 K, which is an attractive feature for sensor operation over a wide range of temperatures. The thermal stability is significantly reduced in forming gas (N_2 :H₂), where Li₂RuO₃ and Li₂PtO₃ are stable up to ~850 K, while Li₂IrO₃ is stable to ~450 K. Thermal analysis coupled with *ex-situ* and *in-situ* diffraction measurements show that Li₂ MO_3 compounds decompose through reduction of the platinum group metal cation to its elemental state combined with exsolution of Li₂O. Li₂IrO₃ undergoes a slightly more complicated decomposition, which appears to involve loss of oxygen prior to collapse of the layered Li₂IrO₃ structure.

Optical measurements, electronic structure calculations, and impedance measurements indicate that Li₂IrO₃ is a metallic conductor, while Li₂PtO₃ is a semiconductor. Relatively high electronic conductivity is a prerequisite for a material to effectively function as a pH sensing material. Thus Li₂PtO₃ is unlikely to behave favorably for this application. In contrast, the formation of metallic Li₂IrO₃ is observed when iridium metal is reacted with either a stoichiometric amount or even a large excess of Li₂CO₃. This may help to explain why pH sensors made from lithium carbonate melt oxidation of Ir wires are superior to sensors produced from a similar treatment of platinum.

Acknowledgment

This work was supported by a National Science Foundation IGERT Grant no. DGE-0221678.

References

- [1] A. Fog, R.P. Buck, Sensors Actuators 5 (1984) 137.
- [2] K.G. Kreider, M.J. Tarlov, J.P. Cline, Sensors Actuators B 28 (1995) 167.
- [3] M. Wang, S. Yao, Electroanalysis 15 (2003) 1606.
- [4] S. Yao, M. Wang, J. Electrochem. Soc. 149 (2002) H28.
- [5] S. Yao, M. Wang, M. Madou, J. Electrochem. Soc. 148 (2001) H29.
- [6] J.F. Dulac, C.R. Acad. Sci. Paris Ser. B 270 (1970) 223.
- 7] A.C.W.P. James, J.B. Goodenough, J. Solid State Chem. 74 (1988) 287.
- [8] H. Kobayashi, R. Kanno, Y. Kawamoto, M. Tabuchi, O. Nakamura, M. Tanako, Solid State Ionics 82 (1995) 25.
- [9] H. Kobayashi, M. Tabuchi, M. Shikano, H. Kageyama, R. Kanno, J. Mater. Chem. 13 (2003) 957.
- [10] K. Asakura, S. Okada, H. Arai, S.-I. Tobishima, Y. Sakurai, J. Power Sources 81–82 (1999) 388.
- [11] A. Alexander, P.D. Battle, J.C. Burley, D.J. Gallon, C.P. Grey, S.H. Kim, J. Mater. Chem. 13 (2003) 2612.
- [12] P. Kroeschell, R. Wolf, R. Hoppe, Z. Anorg. Allg. Chem. 536 (1986) 81.
- [13] K. Schwartz, J. Parise, C. Prewitt, R. Shannon, Acta Crystallogr. B 38 (1982) 2109.
- [14] H.M. Rietveld, J. Appl. Crystallogr. 2 (1969) 65.
- [15] A.A. Coelho, Topas Academic 2004.
- [16] I.P. Shapiro, Opt. Spektrosk. 4 (1958) 256.

1809

- [17] W. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quant. Chem. 77 (2000) 77895. [18] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh,
- C. Fiolhais, Phys. Rev. B 46 (1992) 6671.
- [19] J.P. Perdew, Y. Wang, Phys. Rev. B 40 (1986) 8600.
 [20] S. Okada, J.-I. Yamaki, K. Asakura, H. Ohtsuka, H. Arai, S.-I. Tobishima, Y. Sakurai, Electrochim. Acta 45 (1999) 329.
- [21] M. Casas-Cabanas, J. Rodriguez-Carvajal, J. Canales-Vazquez, Y. Laligant, P. Lacorre, M.R. Palacin, J. Power Sources 174 (2007) 414.
- [22] Y. Miura, Y. Yasui, M. Sato, N. Igawa, K. Kakurai, J. Phys. Soc. Japan 76 (2007) 033705.
- [23] J. Bréger, M. Jiand, N. Deupré, Y.S. Meng, Y. Shao-Horn, G. Ceder, C.P. Grey, J. Solid State Chem. 178 (2005) 2575.
- [24] B.E. Warren, Phys. Rev. 59 (1941) 693.